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Abstract

This paper estimates the amenity value of urban trees. The empirical

strategy exploits an ecological catastrophe—the emerald ash borer (EAB)

infestation in Toronto—to isolate exogenous variation in the evolution of the

tree canopy across neighborhoods. One additional tree within a postcode

increases property prices by 0.5-0.9%; neighborhoods most a↵ected by the

EAB infestation experienced a decrease in tree cover of 6 percentage points

and a drop in property prices of up to 5%. One dimension of the tree premium

relates to the cooling properties of urban trees. We quantify this e↵ect of shade

and evapotranspiration on local temperature during heatwaves and on energy

consumption. Our findings suggest large, mitigating e↵ects of urban forestry

on urban heat and substantial energy savings, which however only explain a

small share of the overall amenity value of trees.
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Since 2002, the emerald ash borer (EAB) infestation has a↵ected millions of ash

trees in North America, with a non-negligible impact on the population of “urban”

trees. This ecological catastrophe made salient the social value of green capital in

large cities.1 There are obvious aesthetic benefits of trees in cities, with large exter-

nalities within neighborhoods (Benson et al., 1998; Todorova et al., 2004); trees have

wind-sheltering properties during the winter (Frank et al., 1981; Akbari and Taha,

1992; Nikoofard et al., 2011; Upreti et al., 2017); they contribute to (road tra�c)

noise attenuation (Kragh, 1981); and a house surrounded by trees is not overlooked.

In addition, there are large temperature di↵erentials between urban areas and the

adjacent countryside—a phenomenon known as the urban heat island e↵ect (Oke,

1973)—, and the tree canopy alleviates this e↵ect through evapotranspiration and

shading. The impact on welfare and energy consumption during high temperature

episodes is important to understand, especially so with global warming intensifying

urban heat island e↵ects.

This paper estimates the value of urban trees. We rely on comprehensive urban

forest and land cover assessments collected in 2001 and 2018 by the City of Toronto

in order to evaluate changes in the tree canopy.2 This ten-year period coincides with

the EAB infestation, which we exploit to isolate exogenous variation in the evolution

of the tree canopy. Exposure to the EAB infestation can be measured at a local level

using a geo-referenced register of all city-managed urban trees, which reports tree

species, logged maintenance dates, and tree cut downs.

We first estimate the hedonic value of the tree canopy. We instrument the evo-

lution in the tree canopy within a postcode by its initial exposure to the EAB

infestation, and we identify its e↵ect on residential property values using exhaustive

data on property transactions between 2007 and 2017. We find that one additional

tree within a postcode increases property prices by 0.5-0.9%. As ash trees were

unequally planted across neighborhoods, the EAB infestation had widely di↵erent

e↵ects across the City of Toronto. In some neighborhoods where most city-managed

urban trees were ash trees before the infestation, the impact on property values is

substantial. For instance, neighborhoods which were most a↵ected by the EAB in-

festation experienced a 6 percentage points decrease in tree cover and a 5% drop in

1The previous infestation of such amplitude was the Dutch elm disease, spreading from 1940
to 1970 in North America. This catastrophe pre-dated the EAB infestation, but it also shaped
its impact on cities. Indeed, many cities decided to replace the infested elm trees—the first-best
urban tree—with ash trees.

2The 2007 data was part of the Urban Tree Canopy (UTC) Assessment conducted by Urban
Forestry; the update was titled the 2018 Tree Canopy Study. We complement the data with
vegetation and built-up indices constructed between 2007 and 2020 from satellite imagery (Sentinel
2, 2016–2020, Landsat L8, 2013–2020, Landsat L7, 2007–2012).
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property prices.

Second, we quantify the role of energy savings in explaining the “tree premium.”

Heat waves lead to peaks in energy consumption, and these peaks are partly mit-

igated in neighborhoods with a larger tree canopy. We find that a 10 percentage

point additional tree cover within a postcode reduces the average temperature dur-

ing Summer months (in 2018) by about 2.7% or 0.8 degrees (Celsius) and lowers the

average daily energy consumption by about 1.5-2 kilowatt-hours (kWh) which cor-

respond to a monthly saving of CAD 7.5-10.5. We use these estimates to monetize

the value of trees in alleviating urban heat island e↵ects under di↵erent scenarios,

i.e., more and less conservative climate change projections. Our findings suggest

substantial energy savings from urban trees, magnified by the expected increase in

urban temperature due to climate change. These e↵ects however still represent a

small share of the hedonic value of trees, even when these energy savings already ex-

ceed the yearly maintenance costs per tree of CAD 4.20 by far (2011 City of Toronto

parks and forestry budget proposal).3

This paper is not the first one to estimate the hedonic price of urban trees (see

Morales, 1980; Conway et al., 2010; Franco and Macdonald, 2018; Wachter and

Wong, 2008) and the e↵ect of trees on energy savings (see Akbari and Taha, 1992;

Nikoofard et al., 2011). However, the two exercises present one major empirical

challenge: omitted variation. For instance, leafy suburbs may benefit from various

unobserved amenities (e.g., school quality, peer e↵ects); the opportunity cost of land

may be too large in highly-demand and densely-populated neighborhoods to main-

tain a tree canopy. There would be an upward bias in the correlation between the

tree density and property values in the former case versus a downward bias in the

latter case. In the same vein, households who live in green neighborhoods might be

more concerned about the environment and use less energy than the average house-

hold. Our contribution is to overcome this problem and present causal estimates of

the hedonic price of urban trees or their e↵ect on energy savings.

The empirical strategy exploits two sources of exogenous variation. Our baseline

specification instruments the secular evolution of the tree canopy using an ecologi-

3The cooling e↵ect of trees reduces electricity consumption in the summer and their wind shel-
tering e↵ect reduces natural gas consumption in the winter. To distinguish the specific energy
e↵ects of trees surrounding the house from a more general neighborhood e↵ect, we exploit short-
term weather fluctuations, in particular heat waves and episodes of wind chill. These fluctuations
are interacted with measures of shading and wind-sheltering computed from the positioning of
trees relative to each property—these calculations account for solar angles and weekly wind di-
rections over the course of a year. Using panel data on residential electricity meter readings at
the postcode/month level from 2011–2015 and natural gas data at the postcode/month level from
2010–2017, we show that the tree canopy substantially a↵ects the elasticity of energy consumption
to extreme heat.
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cal catastrophe which scarred North-American cities, the EAB infestation.4 Early

infestations in the City of Toronto were detected in 2007, and the city expected to

lose nearly all of its 860,000 ash trees within ten years. The loss of these prime

shade trees amounts to about 8% of the tree canopy cover over both public and

private land. We rely on this ecological catastrophe to isolate large, exogenous

changes in the tree canopy between 2007 and 2018. The identification assumption

is that the initial allocation of ash trees is orthogonal to the evolution of residential

prices, and the dynamics in urban heat and energy consumption at the postcode

level—conditioning on the density of city-managed trees.5

In an alternative specification, we exploit fluctuations in extreme weather episodes

coupled with measures of exposure computed from the positioning of trees around

each property. We calculate the solar-shading potential of each tree in each month of

the year, by combining the relative positioning of the tree and the property with so-

lar angles across the year. We further calculate the wind-sheltering potential of each

tree in each month of a year by combining the relative positioning of the tree and

the property with monthly wind roses. The annual average of these measures may

be correlated with general levels of energy consumption, as positions of trees might

partly reflect optimization behavior from households. The identifying assumption is

that excess energy savings during extreme weather episodes are not directly corre-

lated with either the solar-shading potential or the wind-sheltering potential—other

than through the mitigation e↵ect of trees themselves.

Our research relates to di↵erent strands of the literature. First, it contributes to

research at the intersection of urban and environmental economics which assesses the

value of green urban infrastructure. The (monetary) value of trees has been widely

recognized by urban planners and Mullaney et al. (2015) provide a comprehensive

review of this literature. Wachter and Wong (2008) is one of the few papers in

economics attempting to estimate the value of individual trees using house price

hedonics; Franco and Macdonald (2018) extend this to an analysis of the house

price e↵ect of tree canopy coverage in Lisbon.6 We contribute to this literature by

4The emerald ash borer is a beetle native to Asia that was accidentally introduced to North
America and first discovered near Detroit, MI (USA) and Windsor, ON (Canada) in the summer of
2002. Since then, the emerald ash borer has become one of the most destructive non-native insects
in North-America. By 2018, it had spread over 33 states in the U.S. and the Canadian provinces of
Ontario, Quebec, and Manitoba and killed hundreds of millions of ash trees (Aukema et al., 2011;
Herms and McCullough, 2014). See http://www.emeraldashborer.info/ for ongoing updates on
the spread of the EAB pest.

5For a similar density of city-managed trees, there exists large variation in the number of ash
trees and thus in the number of trees that were lost to the recent EAB infestation. The initial
allocation of ash trees in Toronto was partly related to a previous catastrophe, the Dutch elm
disease, which had a similar uneven impact on the tree canopy during the 1970s.

6Jones and McDermott (2018a) point out that most papers focus on the benefits of trees without
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providing plausibly causal estimates of the amenity value of trees.

Second, our analysis focuses on one specific e↵ect of green infrastructure, i.e.,

its potential to reduce energy consumption during extreme heat events.7 This part

relates to Au↵hammer (2018) who assesses how future climate change will a↵ect

electricity and natural gas consumption in California. We further relate to work

on the economic value of green buildings (Eichholtz et al., 2010, 2013) and energy

e�cient houses as reviewed in the handbook chapter by Kahn and Walsh (2015).

Lastly, we add to the literature on the e↵ects of climate change on densely

populated urban areas (see, for instance, the review articles by Dell et al., 2014;

Gra↵ Zivin and Neidell, 2013; Kahn and Walsh, 2015). With urbanization comes

an increase in impermeable surfaces like stone, concrete and asphalt, which tend

to have high albedo rates. The loss of soil and vegetation reduces the natural

cooling e↵ect of evapotranspiration and shading from trees and other vegetation,

thus leading to observable temperature di↵erentials between urban areas and the

adjacent countryside. Oke (1973) refers to this phenomenon as the urban heat island

e↵ect. An immediate consequence of heat islands is an increasing energy demand

for cooling and, in the presence of climate change, these costs are expected to rise

markedly (Estrada et al., 2017; Santamouris et al., 2015). One way to mitigate

the urban heat island e↵ect is to invest in the urban canopy.8 Building energy

simulations suggest significant shading e↵ects depending on the orientation, size

and distance to urban trees, but e↵ects may di↵er by season. The same shading

may have negative e↵ects during the winter period from reduced solar thermal gains

but this can weigh against positive wind-sheltering e↵ects (Frank et al., 1981; Akbari

and Taha, 1992; Nikoofard et al., 2011; Upreti et al., 2017).

The remainder of the paper is structured as follows. In Section 1, we describe the

context, the data sources and the e↵ect of the EAB infestation on urban forestry.

Section 2 presents the empirical strategy. Sections 3 and 4 provide causal estimates

of the hedonic price of urban forestry and its e↵ect on urban heat and energy savings.

The final section concludes.

consideration of costs. To address this, they develop a bio-economic health model that accounts
for a range of benefits, costs and externalities and calibrate it to data from New York City. They
report positive yet smaller net benefits of trees than commonly reported in the literature.

7Jones and McDermott (2018b) use time-variation in the spread of EAB across U.S counties
to estimate how the loss of trees a↵ected level of air pollutants.

8Roy et al. (2012) review existing studies on urban tree benefits across di↵erent climatic zones
and Bowler et al. (2010) provide a more general review of the benefits of urban green infrastructure
in general.
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1 Context, data and evolution of the tree canopy

This section discusses the original allocation of ash trees across neighborhoods of

Toronto and the evolution of the emerald ash borer (EAB) infestation over the past

decade. We then describe our data sources and data construction. We finally shed

light on the relationship between the EAB infestation and the evolution of the tree

canopy, which constitutes the first stage of our baseline empirical strategy.

1.1 Context

Toronto is one of the greenest cities in North America. The 2018 Tree Canopy Study

found that Toronto has an estimated 11.5 million trees, as much as the combined

number of trees in New York (5.2 million) and Los Angeles (6 million).9 The tree

population in Toronto consists of a large number of native trees, that date back to

the Carolinian forests before the 18th century. These species include: black, green

and white ash; birch; white cedar; American chestnut; white elm; maple; black,

red, white oak; white pine etc. Additional non-native species were introduced by

European settlers, e.g., barberry, larch, lilac, Norway maple or pine.

Dutch elm disease and the allocation of trees before 2007 Growing trees

in cities is notoriously di�cult. Road salt, compact soil, pollution and Canada’s

winters all make urban areas of Toronto unkind to trees. The tree of choice in such

harsh environments used to be elm trees, which thrive in urban areas and present

convenient aesthetic features. Elm trees were primarily planted at the beginning

of the 20th century in North America, such that their allocation across the city of

Toronto coincides with neighborhood growth between 1900 and 1930.

Elm trees steadily disappeared from most North-American cities due to the Dutch

elm disease. Around 1930, elm bark beetles appeared in New York, threatening the

large population of trees in New Haven. However, the disease did not start to prop-

agate until the Second World War when the quarantine and sanitation procedures

that had been implemented since 1928 were abandoned due to budget restrictions.

After the Dutch elm disease swept through toward the second half of the last century,

most municipalities planted ash trees as a “second-best” urban tree (MacFarlane and

Meyer, 2005). The past allocation of elm trees across and within cities of the East

9Apart from the central business district and industrial parks, most neighborhoods have alleys
of trees or public parks. Houses in rich residential neighborhoods have backyard gardens with
significant tree coverage. The city of Toronto estimates a structural value of its urban forest that
amounts to CAD 7.04 billion plus ecosystem services worth more than CAD 55 million each year
(City of Toronto, 2019).
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Coast thus closely relates to the more recent allocation of ash trees. Neighborhoods

of Toronto with large populations of elm trees in 1930, e.g., Scarborough or Mount

Pleasant, have a large population of ash trees nowadays.

Emerald ash borer infestation The emerald ash borer is a beetle that was ac-

cidentally introduced to North America around 2000. This invasive species survives

well in the North-American environment, due to a lack of natural predators. The

beetle attacks trees at all stages of its life-cycle: the larva feeds aggressively on tis-

sues of the trees, which produces larval galleries and frass; the adults then escape the

tree which leaves holes in the bark—one of the first recognizable symptoms of infes-

tation. Adults feed on ash foliage, but only live su�ciently long (less than a month)

to lay a cluster of eggs in crevices of the bark. Overall, infested trees present yellow

foliage, bark fissures, high woodpecker activity (feeding on borers), larval galleries

which can be spotted using holes in the bark (and frass). Without specific treat-

ment, e.g., TreeAzin injections in the very early stages of the infestation, it takes

between 1 and 4 years for the infested ash tree to die. Between 2007 and 2017, the

city had lost more than half of these 860,000 ash trees.10

1.2 Data sources

This section presents the data sources used in this research.

Tree canopy and land cover To estimate the tree cover and its evolution, we

use high-resolution land classifications in 2007 and in 2018. These land classifica-

tions were performed by the Urban Forestry services of the City of Toronto using

multispectral QuickBird satellite imagery at a resolution of 0.6m. The analysis was

additionally assisted by LiDAR information, manual assessments and corrections

(City of Toronto, 2019). The land classifications isolate the following eight cate-

gories: tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved

surfaces and agriculture. Figure 1 provides an illustration of such land categories

across two neighborhoods of Scarborough in 2007. We combine the land classifica-

tions in 2007 and 2018 with the shapes of postcodes to construct the area shares of

all categories within the di↵erent postcodes (using a bu↵er of 10m in the baseline

specification to properly capture street trees in front of houses).11

10Removals were concentrated in Scarborough, North York and Etobicoke. Trees in Downtown
Toronto received early TreeAzin injections, possibly delaying or preventing their full infestation.

11To facilitate the calculations of the solar-shading or wind-sheltering potential, we transform
the “tree cover” surface into a discrete number of individual trees. More specifically, we construct
synthetic trunk locations by randomizing tree trunks every 10 meters inside the “tree coverage”
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While the city aimed at harmonizing the classification techniques in 2007 and

2018, there may still be measurement error in the assessed evolution of the tree

canopy. Our main empirical strategy should correct for the possible attenuation

bias associated with classification errors to some extent. We complement and vali-

date these measures of land cover with vegetation and built-up indices constructed

between 2007 and 2020 from satellite imagery (Sentinel 2, 2016–2020, Landsat L8,

2013–2020, Landsat L7, 2007–2012). We describe the construction of these indices

and a few validation exercises in Appendix A.1 and shed some light on the evolution

of the tree canopy in Appendix A.2.

Ash trees To identify the location of ash trees, we rely on the register of all

publicly maintained street trees provided by the City of Toronto (about 600,000

trees in total, and 30,000 ash trees). The data contains the street address, the

common tree species and the diameter at breast height which can be used to infer

the tree size and also the crown size. For the latter, we rely on estimates of the

relationship between the crown diameter and stem diameter (Peper et al., 2014) and

use the diameter at breast height to approximate the area that the crown covers.

A specific register focuses on ash trees and the activity related to the EAB

infestation, i.e., the dates of EAB Removals and TreeAzin Injections. Figure 1

shows the location of publicly maintained ash trees across two neighborhoods of

Scarborough, one with a relatively low density of ash trees and one with a relatively

high density of ash trees. To provide additional insight into the distribution of ash

trees in the City of Toronto, we show a density map of these publicly maintained

ash trees in panel (a) of Figure 2. While ash trees are present in every ward, they

are most concentrated in the North-East of the city.

Property values We use exhaustive property transaction data between 2007 and

2017 in order to estimate the hedonic value of the local tree canopy. The data

comes with a wide range of transaction and property attributes: the transaction

date; price; type of property (35 categories); number of floors; number of bedrooms,

kitchens, washrooms, family rooms, and fireplaces; the size of the lot; and parking

space. The dataset contains about 387,000 transactions (between 30,000-40,000 per

year). To geolocate properties, we combine the transaction data with a geolocated

address register provided by the City of Toronto, and perform a fuzzy string match-

ing algorithm on addresses. Panel (b) of Figure 2 shows the overall distribution of

transactions within the City of Toronto between 2007 and 2017. In order to correct

surface.
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for the over-representation of transactions in certain neighborhoods, e.g., downtown

Toronto, the main empirical strategy will weigh each transaction to equalize the

overall weight of each postcode.

We complement the transaction data with neighborhood characteristics from the

cadastre of the City of Toronto that includes detailed information about property

boundaries, building footprints, and the general urban infrastructure. We employ

this cartographic information to calculate distance to amenities and other controls

capturing neighborhood quality.

Energy consumption and temperature We have access to data from all resi-

dential electricity meters in the City of Toronto. About 800,000 customer IDs i are

nested in 21,000 postcodes p over the period 2011–2015. We also collect data on the

aggregate consumption of natural gas per postcode and month over the period 2010

to 2017; we divide the total gas consumption in a year by the number of registered

gas meters to derive a measure of average household gas consumption.12

Finally, we collect the Land Surface Temperature (LST) during Summer 2018

using the Thermal Infrared (TIRS) band provided by Landsat L8 and collapse the

measure at the level of postcodes, Tp. Specifically, we calculate the Top of Atmo-

spheric (TOA) spectral radiance, convert this brightness measure into a temperature

measure and correct for land surface emissivity (LSE). Note that the LSE employs a

fractional vegetation measure that is based on the Normalized Di↵erence Vegetation

Index (NDVI) (see Ermida et al., n.d., for more details). This might induce some

mechanical correlation with the presence of trees, but the LST is currently the best

measure to capture surface temperature at a fine spatial scale.

1.3 EAB infestation and the tree canopy

We now discuss important evidence on the e↵ect of the EAB infestation on land

cover, mirroring the initial distribution of ash trees across neighborhoods (see Fig-

ures 1 and 2).

We first provide an illustration of the systematic removal of infested ash trees by

focusing on the North-East of Toronto (the municipal area of Scarborough) where

we observe a relatively high density of publicly maintained ash trees at baseline. Fig-

ure 3 compares the land classifications provided by Urban Forestry in 2007 (panel a)

and in 2018 (panel b). As apparent from the figure, there is a marked decrease in

12There are important seasonal patterns in energy consumption. We describe these patterns
in Appendix A.3, in which we also discuss the construction of harmonized energy consumption
measures at the postcode level.
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the area covered by trees which coincides with the location of street ash trees (green

symbols).

The systematic relationship between ash trees and tree removals between 2007

and 2018 is further explored in Figure 4. We consider a postcode as the main unit of

observation, and we construct the long di↵erence in area share of tree cover between

2007 and 2018. Panel a of Figure 4 shows the correlation between the evolution of the

tree canopy (di↵erence in area shares of tree cover within a 10m bu↵er) and a measure

of ash tree density (number of street ash trees per area within a 10m bu↵er, as

measured in 2010) across postcodes. Panel b of Figure 4 conditions this relationship

on a measure of street tree density (irrespective of their species), latitude, longitude,

the land classification in 2007 (the area shares of tree canopy, grass/shrub, bare

earth, water, buildings, roads, other paved surfaces and agriculture) and ward fixed

e↵ects. We find that there is a strong, precisely estimated, negative correlation

between tree cover in 2018 and the density of ash trees: an additional 0.002 ash

trees per square meter is associated with a decrease of 0.06 in the area share of tree

cover (see panel b). To rationalize the previous relationship, an additional 0.002 ash

tree per square meter corresponds to 2,000 ash trees per square kilometer. If each

ash tree uniquely covered about 50-80 square meters (for a crown with a 4-5 meter

radius), these 2000 ash trees would cover 10-16% of a square kilometer. Compared

to this back-of-the-envelope calculation, the actual tree cover decreases by only 6%

of a square kilometer. The di↵erence between the two numbers could be explained

by: (i) overlap between tree crowns, (ii) sluggish tree removals and trees having

received TreeAzin injections, or (iii) fast replacement.

Our empirical strategy hinges on the intuition that the negative relationship

between street tree density and tree removals between 2007 and 2018 is mostly

visible with ash trees but not with other species of trees. We explore the relationship

between the evolution of the tree canopy between 2007–2018 and the density of

publicly maintained trees in Table 1. In this table, as in Figure 4, the unit of

observation is a postcode, the dependent variable is the change in tree cover between

2007 and 2018, and we control for ward fixed e↵ects, latitude and longitude, and

area shares of trees, grass/shrub, bare earth, water, buildings, roads, other paved

surfaces and agriculture in 2007. In column 2, we add a control for the density of

all publicly maintained trees within a 10m bu↵er of the postcode. In column 3, we

add the densities of other popular species of publicly maintained trees (i.e., spruce

trees, elm trees, maples). The negative e↵ect of the initial density of ash trees is

robust across specifications and is one order of magnitude larger than the e↵ects of

other tree species. This e↵ect is key to our empirical strategy.
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2 Empirical Strategy

This section describes the empirical strategy and a few descriptive statistics.

2.1 Estimating the hedonic value of the tree canopy

The hedonic value of urban forestry should encompass all the net present benefits

of a tree in a given proximity to a property, including its long-term e↵ect on energy

consumption. An empirical strategy aiming to estimate the causal e↵ect of trees on

property values should exploit exogenous and permanent shocks to the tree canopy.

The shock used in this paper is the density of public ash trees that were lost to the

emerald ash borer infestation and that strongly a↵ected the change in the tree cover

between 2007 and 2018 (as documented in the previous section).

A naive empirical strategy would exploit the observed change in the tree canopy

over time. Letting i denote a property, t denote a certain year, and p a postcode,

we could estimate:

ln(Pipt) = ↵ + �TDpt + �Xit + ⌘p + µt + "ipt

where Pipt is the transaction price, TDpt is the tree cover calculated from its area

share within a radius of 10 meters from the shape of a postcode, Xipt are property

characteristics and other time-varying controls (e.g., di↵erential dynamics across:

wards, latitude, longitude, the initial land cover in 2007), µt are year fixed-e↵ects

and ⌘p are postcode fixed-e↵ects.

This specification su↵ers from three major issues: omitted variation, reverse

causality, and measurement error. First, the evolution of the tree canopy over time

may relate to local developments, for instance, investments in green infrastructure,

transport infrastructure, or the construction of new o�ces. These local developments

would strongly a↵ect property prices and lead to a local expansion or—more likely—

to a reduction of the tree canopy. Second, a rise in the local price of land increases

the opportunity cost of maintaining urban forestry. Third, time-variation in our

measure of tree density, TDpt, may reflect measurement error induced by di↵erences

in the procedures employed to evaluate the tree canopy in 2007 and in 2017. The

latter issue is likely to bias the estimated � downward.

We address these identification issues by isolating variation in the tree canopy

generated by a permanent and exogenous shock: the emerald ash borer infestation.

Letting Apt denote the density of publicly managed ash trees within 10m of a certain
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postcode p at time t, we estimate:

ln(Pipt) = ↵ + �TDpt + �tXipt + ⌘p + "ipt (1)

where TDpt is instrumented by Apt, and Xipt captures the evolution of the time-

varying premium associated to observable house characteristics (i.e., number of bed-

rooms and number of washrooms) and interactions between year fixed e↵ects and

ward fixed e↵ects; a measure of street tree density; latitude and longitude; and area

shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth,

water, buildings, roads, other paved surfaces and agriculture). The specification

thus flexibly controls for the di↵erential evolution of prices across neighborhoods

and time-varying returns to house characteristics. Standard errors are by default

clustered at the postcode ⇥ year level. In robustness checks, we consider alternative

clustering strategies.

Equation (1) requires measures that capture the evolution of tree density, TDpt,

and ash tree density, Apt. We do not have detailed information on the yearly evo-

lution of the tree canopy: we only observe it at the time of the surveys conducted

in 2007 and 2018. We do however observe less precise measures of land cover at the

yearly level sourced from satellite imagery (see Appendix A.2 where we use these

measures to better understand when the urban forestry is visibly a↵ected by tree

removals) and we know from records of the City of Toronto that the year 2011 is the

beginning of work orders to remove ash trees that were infested with the emerald

ash borer.13 We thus construct the baseline exposure to urban forestry and the

baseline instrument as follows: TDpt = TDp,2007 for t  2011 and TDpt = TDp,2018

for t � 2014, Apt = Ap,2010 for t  2011 and Apt = 0 for t � 2014, and we interpolate

linearly for both measures between 2011 and 2014.

One assumption behind our strategy is that all publicly managed ash trees were

indeed lost; imperfect “compliance” from the few trees that were “vaccinated” would

therefore lead to an under-estimate of the hedonic value of urban forestry. Note that,

with forward-looking agents capitalizing the future flow of amenities provided by ur-

ban forestry, property prices should reflect future tree removals once the information

about the EAB infestation becomes public. We provide robustness checks with alter-

native cut-o↵s and without any inference to show that these choices are not driving

our main findings. For instance, we can focus on a subsample of property transac-

tions covering (i) a pre-treatment period between 2007–2009, where no EAB-related

13We observe one work order for an ash tree removal in 2010; 1,646 work orders for ash tree
removals in 2011; 3,912 in 2012 and 7,151 in 2013. Unfortunately, we do not have data for later
years.
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damages had occurred yet; and (ii) a post-treatment period between 2016–2017 when

the majority of ash trees had been removed.

The identification of specification (1) hinges on the assumption that the initial

allocation of ash trees is orthogonal to the evolution of residential prices at the

postcode level—conditioning on the evolution of property prices related to the overall

number of public trees. This empirical strategy may be threatened by the possible

correlation between the spatial distribution of ash trees, inherited from the earlier

spatial distribution of elm trees, and neighborhood dynamics in the City of Toronto.

For instance, neighborhoods may go through long cycles related to the age of the

housing stock (Brueckner and Rosenthal, 2009), and growing neighborhoods in the

1930s may su↵er from gentrification and the redevelopment of the historic city center.

While we control for dynamics of housing prices at the ward level, we provide a more

direct test for this identification threat by assessing the existence of pre-treatment

di↵erential trends between 2002 and 2006.

2.2 Descriptive statistics

Before we move on to the estimations, this subsection provides some descriptive

statistics that aim to provide a better understanding of the variation underlying the

identification strategy.

We start by reporting simple descriptive statistics in Table 2 about transaction

data: the mean and standard deviations of the main variables, control variables

and their values for transactions with above- and below-median tree canopy. As

apparent in Table 2, there are wide di↵erences in tree density across properties.

Properties with above-median tree density have almost six times more tree cover

than properties with below-median tree density in 2007. Urban forestry correlates

with property prices, which are about 40% higher for properties with above-median

tree density. This price di↵erential may illustrate a tree premium, but they also seem

to indicate di↵erential property characteristics. Properties with above-median tree

density have, on average, 0.6 additional bedrooms and one additional washroom.

Figure 5 shows the correlation between house prices and the surrounding urban

forestry. The x-axis is our preferred measure of tree cover, TDpt, i.e., the area share

of tree cover within 10m of the postcode; and the y-axis is the average (log) house

price. The association between transaction prices and tree density should reflect

the price premium associated with leafy suburbs, but also the opportunity cost of

maintaining urban forestry. As shown in panel (a) of Figure 5, this correlation is

positive for almost any share of tree cover in 2007, but especially so in residential

areas with some urban forestry. Panel (b) displays the same relationship conditioning
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on our main control variables: the number of bedrooms and washrooms; latitude,

longitude; and ward fixed e↵ects—all interacted with year fixed e↵ects. As apparent,

the price gradient between less and more leafy neighborhoods is linear.

Figure 6 shows the correlation between summer temperatures between June and

September (2018), Tp, and the surrounding urban forestry. The figure shows a neg-

ative relationship with an average di↵erence of about four degrees Celsius between

postcodes with very low versus very high tree cover. This holds true even when con-

ditioning on ward fixed e↵ects and our baseline controls. In the following sections,

we will discuss whether this (large) temperature gradient can explain the hedonic

value of urban forestry.

3 The hedonic value of urban trees

In this section, we estimate the hedonic value of urban forestry. Our headline finding

is that the tree premium is both economically and statistically significant: adding

one tree within a postcode increases property prices by 0.5-0.8%.

3.1 Baseline specification

Table 3 reports the estimates of Equation (1). By default, all estimations are condi-

tioned on postcode fixed-e↵ects and year fixed e↵ects interacted with eight categories

of land cover in 2007, public tree density, latitude, longitude, and ward-fixed e↵ects.

These controls clean for di↵erential price dynamics across neighborhoods. Column 1

reports OLS estimates conditioning on these baseline controls. Column 2 and 3

report IV estimates in which the evolution in tree density between 2007 and 2018,

TDpt, is instrumented by the initial density of ash trees, Apt. In column 3, we add

transaction controls, including the number of bedrooms and washrooms interacted

with year fixed e↵ects to control for valuations of house characteristics that are

allowed to vary flexibly over time.

The OLS specification shows that the conditional correlation between tree density

and property values is negative and quantitatively irrelevant (column 1). The IV

specification finds a positive and significant e↵ect of urban forestry on property

prices (columns 2 and 3). One percentage point in land cover within a postcode

increases property values by 0.86% in our preferred specification. To help understand

the magnitude of these estimates, consider the following thought experiment: one

additional (ash) tree within a postcode will increase the land cover by about 50-80

square meters if the crown radius is about 4-5 meters; the average postcode covers

about 8,000 square meters; thus, one additional tree increases land cover by 0.6-1
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percentage points. This additional tree would cause a property price increase of

about 0.5-0.9%. This estimate is unlikely to be a↵ected by a weak-instrument issue,

as the first stage is very strong (as shown in Figure 4 and Table 1) and robust to

property controls.

3.2 Identification and robustness checks

One threat to identification is that the initial distribution of ash trees, partly reflect-

ing urban developments in the 1930s and the associated distribution of elm trees,

correlates with secular neighborhood dynamics. We reduce concerns about this

identification threat by testing for the existence of pre-treatment di↵erential trends.

Specifically, we consider the period 2002–2006 in which we do observe property

transactions, albeit with limited transaction controls, and estimate Equation (1) on

this sample of transactions pretending treatment had occurred in between 2004 and

2005. It is reassuring that Table 4 shows no di↵erential trends along the treatment

exposure before the treatment date. More specifically, the OLS estimate (column 1)

is similar to that obtained on the baseline sample, but the IV estimate (column 2)

is small, negative, and non-significant.

We then provide a systematic sensitivity analysis around the baseline specifica-

tion in Table 5. In Panel A, we construct the baseline exposure to urban forestry and

the baseline instrument as follows: TDpt = TDp,2007 for t  T1 and TDpt = TDp,2018

for t � T2, Apt = Ap,2010 for t  T1 and Apt = 0 for t � T2. However, we do not

interpolate between T1 and T2 and rather exclude the years in between. In short, this

specification is equivalent to defining a pre-treatment period [2007, T1] and a post-

treatment period [T2, 2017]. Panel A shows that our main estimate varies between

0.7 and 0.9, when the pre-treatment period changes from [2007, 2011] to [2007, 2009]

(and the post-treatment period from [2014, 2017] to [2016, 2017]). In Panel B, we

consider a long di↵erence setting, similar in essence to the previous exercise, but

rather collapse the data at the postcode level. The estimated equation is:

� ln(Pp) = ↵ + �TDp,2018 + �Xp + "p (2)

where TDp,2018 is instrumented by Ap,2010, and controls (e.g., transaction character-

istics, land cover in 2007) are collapsed at the postcode level. As in Panel A, our

main estimate varies between 0.7 and 1 when we change the pre-treatment period

from [2007, 2011] to [2007, 2009] (and the post-treatment period from [2014, 2017] to

[2016, 2017]). In Panel C, we consider minor alterations around our baseline specifi-

cation: we construct land cover and ash tree density with a 20m bu↵er in column 1
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(instead of 10m in the baseline); we winsorize non-zero values for ash tree density

and all street tree density at 90% or 99% rather than at 95% in the baseline. Again,

the exercise confirms the robustness of our baseline estimations. Lastly, in Panel D,

we consider alternative clustering procedures: at the postcode level in column 1; at

the ward ⇥ year level in column 2; and at the ward level in column 3. Even in the

most demanding specification (in column 3) that clusters on the level of about 50

wards, our estimated e↵ects remain precise.

4 The cooling e↵ect of urban forestry

The previous section 3 has shown that there is a significant and positive amenity

value to local urban forestry. One possible component of this value derives from

the cooling e↵ect of the tree canopy during heat waves. We explore this specific

e↵ect in two steps by first looking at local temperatures during heatwaves and then

analyzing energy consumption.

Urban forestry and urban heat Urban forestry arguably reduces the urban

heat island e↵ects (Oke, 1973; Roy et al., 2012). Our experiment provides a natural

setting to quantify such an e↵ect, as we isolate exogenous variation in the evolution

of the tree canopy within postcodes over time.

Figure 7 illustrates the correlation between urban temperature and urban forestry.

We construct an average mosaic of Landsat 8 satellite imagery for the period 1 June

2018 to 30 September 2018 and consider two indices based on the relative reflectance

of di↵erent bands: the Normalized Di↵erence Vegetation Index (NDVI) capturing

vegetation cover; and the Land Surface Temperature (LST) which we also calculate

at a 30-meter spatial resolution.14 The left panel of Figure 7 displays the aver-

age NDVI over the period, and the right panel shows the average LST across two

adjacent neighborhoods with significant di↵erences in tree canopy coverage (South

Parkdale, South-West of Toronto). We observe a sharp di↵erence between the West

and the East of Du↵erin St: the tree coverage in the West of Du↵erin St markedly

alleviates the rise in temperature during this heat wave episode.

To investigate this relationship more formally, we consider the following specifi-

cation where each observation is a postcode (see Table 6),

ln(Tp,2018) = ↵ + �TDp,2018 + �Xp + "p (3)

14As mentioned in section A, the two measures share some mechanical correlation because the
LST calculations employ a fractional vegetation measure that is based on the ratio of the maximum
and minimum values of the NDVI to correct the temperature measure derived from the Thermal
Infrared (TIRS) band.
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where Tp,2018 is the average Land Surface Temperature within postcode p, and ur-

ban forestry in 2018, TDp,2018, is instrumented by the density of ash trees in 2010,

Ap,2010. Controls include: ward fixed e↵ects (columns 1-3); latitude and longitude

(columns 2-3); the density of publicly maintained trees (columns 2-3); area shares

from the land classification in 2007 (columns 2-3); and the (log) temperature in 2018

(column 3). As shown in Table 6, urban forestry significantly reduces urban heat

during summer months: a 10 percentage point additional tree cover within a post-

code reduces temperature by about 2.7% or 0.8 degrees (Celsius). Global warming

is expected to increase temperatures across neighborhoods in Toronto; the previous

exercise sheds some light on the value of trees in reducing urban heat island e↵ects

in the future.

Urban forestry and energy savings Urban forestry reduces the urban tem-

perature during the warm summer months; this should a↵ect energy consumption

through the (lower) use of air conditioning.

We investigate this energy saving e↵ect in Table 7 where we consider specifica-

tion (3) and replicate the exercise performed in Table 6 with the electricity di↵er-

ential between Summer (June, July, August) versus the other months as the main

dependent variable. One shortcoming is that we do not observe energy consump-

tion at the beginning and end of the treatment period, but for intermediate years

(2011–2015). We thus consider the electricity di↵erential in 2014 (top panel) and in

2015 (bottom panel), controlling for the electricity di↵erential in 2011 (column 3).

Table 6 shows that a 10 percentage point additional tree cover within a postcode

reduces the average daily energy consumption during the Summer months by about

1.5-2 kilowatt-hours (kWh) which correspond to 25-35 cents and CAD 7.5-10.5 per

month. Even though these energy savings are substantial, the discounted cumulative

energy savings remain at most in the low thousands which is one order of magnitude

too small to explain the amenity value of urban forestry derived in Section 3.

We provide in Appendix B an alternative specification exploiting short-term

weather fluctuations interacted with solar exposure induced by the positioning of

trees and solar angles. We also characterize the sheltering e↵ect of urban forestry

during Winter months.

In summary, we show that trees play a role in reducing heat e↵ects in the summer

and they can also provide shelter from wind in the winter. For the individual house,

we find that this has a direct monetary value that comes from the reduction in energy

and gas expenditures and we expect these savings to become more relevant in the

future as temperatures and energy prices may rise. That said, it is not surprising
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that these direct monetary benefits do not explain the overall amenity value of trees

since previous research has shown that trees provide additional amenity e↵ects that

are also capitalized in house prices.

5 Concluding remarks

This paper assesses the value of urban trees. We first estimate the hedonic price

of urban trees. This exercise is challenging because the correlation between tree

density and property prices could reflect local redevelopments or the opportunity

cost of maintaining urban forestry. To establish causality, we rely on large, quasi-

experimental variation deriving from the emerald ash borer infestation in Toronto

that wiped out a significant share of the tree canopy between 2011 and 2018. We

find that the hedonic price of urban forestry is positive and large.

Existing research has shown that trees have a number of beneficial e↵ects on their

environment which may contribute to this estimated amenity e↵ect. For instance,

Kardan et al. (2015) have highlighted the positive e↵ect of trees on mental health

in a study that uses the 2007 canopy survey in Toronto, and a recent study by

Jones and McDermott (2018b) analyzes how the loss of ash trees leads to increased

air pollution. Less research has systematically analyzed the energy savings from the

urban tree canopy. We use novel data on households electricity and gas consumption

and find that trees reduce the local temperature during heat waves, leading to a

reduction in energy consumption. In the next steps, we plan to quantify how much

of the energy e↵ect of trees is driven by temperature reduction and to combine

information on temperature predictions for the year 2050 with the city’s goal to grow

the tree canopy over the next decade in order to assess the role of urban forestry in

alleviating urban heat island e↵ects and their impact on energy consumption.
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Figures and Tables

Figure 1. Land use classification in 2007 and (public) ash trees.

(a) Low density of ash trees. (b) High density of ash trees.

Notes: This Figure shows the land use classification in two neighborhoods of Scarborough (East of Toronto)—one

with a relatively low density of ash trees (left panel); one with a relatively high density of ash trees (left panel). The

data was produced in 2007 by Urban Forestry as part of an Urban Tree Canopy (UTC) Assessment. Land cover

is characterized by the following classes: tree canopy (dark green), grass/shrub (lighter green), bare earth (sand),

water (dark blue), buildings (red), roads (dark gray), other paved surfaces (light gray) and agriculture (yellow).

The green symbols represent the location of public ash trees, as geolocated from their street addresses (Street Tree

General Data, 2010).

Figure 2. Distribution of ash trees and transactions within the City of Toronto.

(a) Ash trees (density, 2010). (b) Transactions (density, 2007–2017).

Notes: The left panel shows the density of street ash trees managed by the city of Toronto (Street Tree General

Data, Toronto, 2010); the right panel displays the density of property transactions between 2007 and 2017. Each

color class represents a decile of density (from light pink to yellow to red on the left panel, from light yellow to green

to blue on the right panel).
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Figure 3. Ash trees and the evolution of the tree canopy—an illustration.

(a) 2007. (b) 2018.

Notes: This Figure shows the land use classification in a given neighborhood in the North-East of Toronto

(Scarborough)—with a relatively high density of ash trees. The data was produced in 2007 (left panel) and 2018

(right panel) by Urban Forestry as part of an Urban Tree Canopy (UTC) Assessment. Land cover is characterized

by the following classes: tree canopy (dark green), grass/shrub (lighter green), bare earth (sand), water (dark blue),

buildings (red), roads (dark gray), other paved surfaces (light gray) and agriculture (yellow). The green symbols

represent the location of public ash trees, as geolocated from their street addresses (Street Tree General Data, 2010).

Figure 4. The e↵ect of ash tree density on the tree canopy between 2007 and 2018.

(a) Unconditional. (b) Conditional.

Notes: The left panel represents the relationship between the evolution of the area share of tree cover between

2007 and 2018 (as produced by Urban Forestry as part of an Urban Tree Canopy Assessment) and our ash tree

density (number of street ash trees per area within a 10m bu↵er, as measured in 2010) across postcodes. We group

transactions by bins of ash tree density: the dots represent the average evolution of the tree canopy within each

bin. The right panel represents the same relationship in which the evolution of the area share of tree cover between

2007 and 2018 and the ash tree density are residualized: we regress both measures on a measure of street tree

density, latitude, longitude, the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings,

roads, other paved surfaces and agriculture) and ward fixed e↵ects. The lines are locally weighted regression on all

observations.
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Figure 5. Correlation between transaction price and density of the tree canopy.

(a) Unconditional. (b) Conditional.

Notes: The left panel represents the relationship between the (logarithm) transaction price and our measure of tree

cover at the postcode level (with a bu↵er of 10m around the postcode shape). We group transactions by bins of

tree cover: the dots represent the average transaction price within each bin. The right panel represents the same

relationship in which the (logarithm) transaction price and the tree cover within the postcode are residualized: we

regress both measures on the number of bedrooms, the number of washrooms, the latitude, the longitude, ward

fixed e↵ects—all interacted with year fixed e↵ects. The lines are locally weighted regression on all observations.

Figure 6. Correlation between Summer temperature and density of the tree canopy in 2018.

(a) Unconditional. (b) Conditional.

Notes: The left panel represents the relationship between the average temperature during the Summer in 2018 and

our measure of tree cover at the postcode level (with a bu↵er of 10m around the postcode shape and in 2018). We

group postcodes by bins of tree cover: the dots represent the average temperature within each bin. The right panel

represents the same relationship in which the temperature and the tree cover within the postcode are residualized:

we regress both measures on the latitude, the longitude, and ward fixed e↵ects. The lines are locally weighted

regression on all observations.
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Figure 7. The cooling e↵ect of urban forestry—an illustration.

(a) NDVI. (b) Temperature.

Notes: This Figure exploits Landsat 8 satellite imagery between June, 1st 2018 and September, 15th, 2018. The

left panel shows the Normalized Di↵erence Vegetation Index (NDVI) where green colors indicate a higher vegetation

cover. The right panel shows the Land Surface Temperature (LST) where red colors indicate higher temperatures.
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Table 1. Ash trees and the evolution of the tree canopy between 2007 and 2018.

Tree cover (2007–2018)
(1) (2) (3)

Ash tree density -12.23 -13.78 -13.96
(1.349) (1.365) (1.372)

Street tree density 1.444 1.910
(0.197) (0.287)

Spruce tree density 1.189
(1.305)

Elm tree density 3.408
(2.042)

Maple tree density -2.000
(0.575)

Observations 45,520 45,520 45,520
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode, and the

dependent variable is change in tree cover between 2007 and 2018. All specifications include: ward fixed e↵ects;

latitude and longitude; and area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth,

water, buildings, roads, other paved surfaces and agriculture).
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Table 2. Descriptive statistics.

Tree density
Mean Stand. dev. High Low

Panel A: Transaction characteristics
Transaction price 13.03 0.627 13.20 12.86
Number of bedrooms 1.981 1.351 2.331 1.630
Number of washrooms 2.182 1.114 2.479 1.886

Panel B: Land cover in 2007
Tree canopy 0.220 0.191 0.380 0.060
Grass/shrub 0.152 0.121 0.181 0.123
Bare earth 0.009 0.083 0.001 0.017
Water 0.001 0.007 0.001 0.001
Buildings 0.225 0.161 0.192 0.259
Roads 0.161 0.165 0.114 0.207
Other paved surfaces 0.229 0.218 0.129 0.330
Agriculture 0.000 0.003 0.000 0.000

Panel C: Street trees
Ash tree density (per sq. km) 78.28 263.2 89.59 66.98
Public tree density (per sq. km) 1,949 2,083 2,164 1,734

Observations 385,933 192,839 193,094
Notes: All statistics are computed using the baseline sample of transactions. The samples of high- and low-tree

density are defined with respect to the median share of tree canopy as produced by Urban Forestry as part of an

Urban Tree Canopy Assessment in 2007.

27



Table 3. The amenity value of trees—baseline specification.

Transaction price (log)
(1) (2) (3)

Tree cover -0.049 1.009 0.866
(0.015) (0.310) (0.272)

Transaction controls No No Yes
F-statistic - 80.73 83.82
Observations 374,295 374,295 374,286
Notes: Standard errors are reported between parentheses and are clustered at the postcode ⇥ year level. Column 1

reports OLS results and columns 2-3 report the estimates from the IV specification in which tree cover is instrumented

by the ash tree density. The unit of observation is a transaction, and the dependent variable is the (log) transaction

price. All specifications are weighted by the inverse of the number of observations in a given postcode. The set

of transaction controls include the number of washrooms and bedrooms interacted with year fixed e↵ects. All

specifications include: (i) postcode fixed e↵ects; (ii) ward fixed e↵ects interacted with year fixed e↵ects; (iii) a

measure of street tree density interacted with year fixed e↵ects; (iv) latitude and longitude interacted with year

fixed e↵ects; (v) area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water,

buildings, roads, other paved surfaces and agriculture) interacted with year fixed e↵ects.

Table 4. The amenity value of trees—placebo specification (2002–2006).

Transaction price (log)
(1) (2)

Tree cover -0.067 -0.197
(0.020) (0.388)

F-statistic - 48.26
Observations 168,457 168,457
Notes: Standard errors are reported between parentheses and are clustered at the postcode ⇥ year level. Column 1

reports OLS results and column 2 reports the estimates from the IV specification in which tree cover is instrumented

by the ash tree density. The unit of observation is a transaction, and the dependent variable is the (log) transaction

price. All specifications are weighted by the inverse of the number of observations in a given postcode. All specifi-

cations include: (i) postcode fixed e↵ects; (ii) ward fixed e↵ects interacted with year fixed e↵ects; (iii) a measure of

street tree density interacted with year fixed e↵ects; (iv) latitude and longitude interacted with year fixed e↵ects;

(v) area shares from the land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads,

other paved surfaces and agriculture) interacted with year fixed e↵ects.
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Table 5. The amenity value of trees—robustness checks.

Transaction price (log)
(1) (2) (3)

Panel A: No inference
Tree cover 0.707 0.874 0.901

(0.198) (0.454) (0.315)

F-statistic 115.44 79.72 51.66
Observations 311,261 240,448 168,598
Sample 7–11/14–17 7–10/15–17 7–9/16–17

Panel B: Long di↵erence
Tree cover 0.761 1.006 0.934

(0.333) (0.385) (0.310)

F-statistic 64.93 55.48 41.26
Observations 21,264 18,404 14,312
Sample 7–11/14–17 7–10/15–17 7–9/16–17

Panel C: Sensitivity
Tree cover 1.378 1.013 0.795

(0.418) (0.314) (0.298)

F-statistic 30.33 65.12 48.07
Observations 370,556 374,286 374,286
Specification Bu↵er: 20m Winsorizing: 90% Winsorizing: 99%

Panel D: Clustering
Tree cover 0.866 0.866 0.866

(0.345) (0.290) (0.485)

F-statistic 40.41 38.57 9.86
Observations 374,286 374,286 374,286
Clustering Postcode Ward ⇥ year Ward
Notes: Standard errors are reported between parentheses and are clustered at the postcode ⇥ year level (except in

Panel D). All columns report the estimates from the IV specification in which tree cover is instrumented by the

ash tree density. In Panel A, C, D, the unit of observation is a transaction, the dependent variable is the (log)

transaction price, and the specifications include: (i) postcode fixed-e↵ects; (ii) ward fixed e↵ects interacted with

year fixed e↵ects; (iii) a measure of street tree density interacted with year fixed e↵ects; (iv) latitude and longitude

interacted with year fixed e↵ects; (v) area shares from the land classification in 2007 (tree canopy, grass/shrub,

bare earth, water, buildings, roads, other paved surfaces and agriculture) interacted with year fixed e↵ects; (vi) the

number of washrooms and bedrooms interacted with year fixed e↵ects. All specifications are weighted by the inverse

of the number of observations in a given postcode. In Panel A, we restrict the sample to 2007–2011/2014–2017 in

column 1, 2007–2010/2015–2017 in column 2, 2007–2009/2016–2017 in column 3. In Panel B, we apply the same

sample restrictions and consider a specification in long di↵erence in which all variables are collapsed at the postcode

level. In Panel C, we explore variations around the baseline specification: a bu↵er of 20m around postcodes in

column 1, a winsorizing at 90% for public and ash tree densities in column 2, a winsorizing at 99% for public and

ash tree densities in column 3. In Panel D, we explore variations around the baseline clustering procedure: at the

postcode level in column 1, at the ward ⇥ year level in column 2, at the ward level in column 3. There are about

50 wards in Toronto.
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Table 6. The cooling e↵ect of trees—temperature.

Temperature (2018, log)
(1) (2) (3)

Tree cover -0.359 -0.329 -0.270
(0.059) (0.053) (0.043)

Controls Ward + Extended + Temp. (2013, log)
F-statistic 101.1 100.2 95.90
Observations 45,501 45,501 45,501
Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode, and the

dependent variable is the (log) temperature in 2018. Column 1-3 report the estimates from the IV specification

in which the di↵erence in tree cover between 2007–2018 is instrumented by the ash tree density at baseline. The

specifications include: ward fixed e↵ects (columns 1-3); latitude and longitude (columns 2-3); the density of pub-

licly maintained trees (columns 2-3); area shares from the land classification in 2007 (columns 2-3); and the (log)

temperature in 2018 (column 3).

Table 7. The cooling e↵ect of trees—electricity consumption.

Electricity di↵erential (2014)
(1) (2) (3)

Tree cover -23.71 -25.33 -14.59
(7.123) (7.701) (5.481)

Controls Ward + Extended + Electricity (2011)
F-statistic 37.64 39.25 40.28
Observations 19,948 19,948 19,909

Electricity di↵erential (2015)
(1) (2) (3)

Tree cover -32.55 -32.79 -21.51
(12.46) (13.09) (11.51)

Controls Ward + Extended + Electricity (2011)
F-statistic 36.21 40.33 40.77
Observations 15,785 15,785 15,751

Notes: Robust standard errors are reported between parentheses. The unit of observation is a postcode, and the

dependent variable is the electricity di↵erential between Summer (June, July, August) versus the other months in

2014 (top panel) and in 2015 (bottom panel). Column 1-3 report the estimates from the IV specification in which

the di↵erence in tree cover between 2007–2018 is instrumented by the ash tree density at baseline. The specifications

include: ward fixed e↵ects (columns 1-3); latitude and longitude (columns 2-3); the density of publicly maintained

trees (columns 2-3); area shares from the land classification in 2007 (columns 2-3); and electricity consumption in

2011 (column 3).
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A Data appendix

This section complements Section 1 with (i) a description of satellite imagery and

vegetation/built-up indices; (ii) a characterization of the dynamics of urban forestry

over time; and (iii) a description of the energy data.

A.1 Satellite imagery

Our baseline specification relies on land classifications provided by the Urban Forestry

services of the City of Toronto based upon high-resolution satellite imagery and Li-

DAR information (City of Toronto, 2019). We however complement and validate

these measures of land cover with satellite imagery (Sentinel 2, 2016–2020, 10m

resolution; Landsat L8, 2013–2020, 30m resolution; Landsat L7, 2007–2012, 30m

resolution).

Figure A1. Satellite imagery and vegetation/built-up indices (2018).

(a) NDVI. (b) NDBI.

Notes: This Figure displays vegetation/built-up indices constructed from a cloud-free mosaic of Sentinel imagery

(S2, 10m resolution) covering May–September 2018 (North-East of Toronto). The Normalized Di↵erence Vegetation

Index (NDVI) is obtained by combining the reflection in the near-infrared spectrum (NIR) with the reflection in the

red range of the spectrum (RED). The Normalized Di↵erence Built-up Index (NDBI) is obtained by combining the

reflection in the near-infrared spectrum (NIR) with the reflection in the short-wave infrared range of the spectrum

(SWIR).

To construct vegetation, built-up and water indices, we proceed as follows for

each collection of satellite imagery: (i) we isolate a summer period in any given year

from June 1st to September 30th; (ii) we construct a cloud-free mosaic of images

taken during this period; (iii) we construct a range of indices, most notably, Nor-

malized Di↵erence Vegetation Index (NDVI)—obtained by combining the reflection

in the near-infrared spectrum (NIR) with the reflection in the red range of the spec-

trum (RED)— and the Normalized Di↵erence Built-up Index (NDBI)—obtained by

combining the reflection in the near-infrared spectrum (NIR) with the reflection in
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the short-wave infrared range of the spectrum (SWIR); (iv) we consider the average

indices within each postcode and every year covered by the collection. We illustrate

the variation captured by NDVI and NDBI in Figure A1 (based on Sentinel S2 in

2018).

Figure A2. Validation of the measure of tree cover.

(a) NDVI (Landsat, 2018). (b) NDVI (Sentinel, 2018).

(c) LAI (Landsat, 2018). (d) LAI (Sentinel, 2018).

Notes: This Figure correlates the measure of tree cover produced by Urban Forestry as part of an Urban Tree Canopy

(UTC) Assessment in 2018 with standard vegetation indices extracted from recent satellite imagery. Panels (a)

and (b) correlate the area share of tree canopy in 2018 with the Normalized Di↵erence Vegetation Index (NDVI)

across postcodes. The NDVI is obtained by combining the reflection in the near-infrared spectrum (NIR) with the

reflection in the red range of the spectrum (RED). Panels (c) and (d) correlate the share of tree coverage in 2018

with the Leaf Area Index (LAI) across postcodes. Panels (a) and (c) rely on a cloud-free mosaic of Landsat imagery

(L8, 30m resolution) covering May–September 2018. Panels (b) and (d) rely on a cloud-free mosaic of Sentinel

imagery (S2, 10m resolution) covering May–September 2018.

We use these indices to validate the land classification data and shed some light

on the dynamics of urban forestry over our period of interest. In Figure A2, we

correlate the measure of tree cover produced by Urban Forestry as part of an Urban

Tree Canopy (UTC) Assessment in 2018 with our vegetation indices, as extracted

from recent satellite imagery (Landsat L8 and Sentinel S2). We see that there is
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a very strong, positive, quasi-linear relationship between the area share covered by

the tree canopy and the vegetation indices based on average reflectance across the

visible, infra-red, near infra-red spectrum.

A.2 Tree canopy and land cover

In this section, we leverage the previous vegetation indices to gain some insight into

the dynamics of urban forestry between 2007 and 2020. More specifically, we run

an event-study specification for the relationship between vegetation indices, Ipt in

postcode p at time t and our measure of exposure to the EAB infestation:

Ipt =
⌧=2020X

⌧=2009

�⌧Ap,2010 ⇥ 1⌧ + pt + ⌘p + "pt,

where pt includes: a measure of street tree density; ward fixed e↵ects; latitude,

longitude; dummies for the land classification in 2007 (tree canopy, grass/shrub, bare

earth, water, buildings, roads, other paved surfaces and agriculture)—all interacted

with year fixed e↵ects. We report the outcome of this specification in Figure A3.

Figure A3. The e↵ect of ash tree density on the tree canopy over time.

(a) NDVI. (b) LAI.

Notes: This Figure shows the estimated treatment e↵ect of ash tree density on the tree canopy over time. More

specifically, we regress the Normalized Di↵erence Vegetation Index (NDVI, left panel) and the Leaf Area Index (LAI,

right panel) across postcodes on: a measure of ash tree density (number of street ash trees per area within a 10m

bu↵er, as measured in 2010); a measure of street tree density; ward fixed e↵ects; latitude, longitude; dummies for the

land classification in 2007 (tree canopy, grass/shrub, bare earth, water, buildings, roads, other paved surfaces and

agriculture)—all interacted with year fixed e↵ects. The reported coe�cients are the ones in front of the measure of

ash tree density interacted with years, and vertical lines show 95 percent confidence intervals. The NDVI is obtained

by combining the reflection in the near-infrared spectrum (NIR) with the reflection in the red range of the spectrum

(RED) and relies on a cloud-free mosaic of Landsat imagery (L8, 30m resolution) covering May–September from

2009 to 2020. The LAI uses the same satellite imagery and is obtained by combining the same bands.

One can see that the di↵erential dynamics of vegetation indices across neighbor-

hoods is noisy, but the treatment e↵ect seems most pronounced from 2012 onward.
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A.3 Energy consumption

Energy consumption is reported in kilowatt hours (kWh) adjusted for line losses

over the billing period. The days of service in a billing period range between 1

and 2 months (see Figure A4) and we know the start and end date of each billing

period which varies across households. To calculate the average monthly energy

consumption in postcode p, month m and year t, we construct a daily panel of each

household i’s average daily energy consumption and estimate:

eipmt = ↵i + Epmt + ✏ipmt

where the fixed e↵ects Epmt capture the average daily energy consumption in post-

code p for a given month m of year t. To derive a measure epmt of the average energy

consumption per month and year, we multiply the average daily energy consump-

tion eipmt by the number of days in the respective month m. One nice feature of

our electricity data is that we can condition the estimation on energy meter fixed

e↵ects, ↵i, which absorb all time-invariant house and occupant characteristics. The

latter control, for example, for the energy e�ciency of the house.

Figure A4. Distribution of the days of service intervals across billing periods.

Notes: This Figure represents the distribution of the days of service intervals across billing periods and is based on

residential energy meters between 2012 and 2015.

There are important seasonal patterns in energy consumption which we illustrate

in Figure A5. Electricity consumption is high in the summer months, due to the

use of air conditioning. Between November–April, electricity consumption is a mix

35



of light and electrical heating, even though natural gas is the most common source

of heating fuel. Consequently, we would expect trees to have more pronounced

electricity consumption e↵ects in the summer. Natural gas is used for heating during

these winter months and there is indeed a significantly higher usage of natural gas

in these months with a spike in January and February, the coldest months.

Figure A5. Electricity and gas consumption over time.
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(b) Natural gas.

Notes: The left panel of the graph shows the regression adjusted average monthly electricity consumption measured in

kWh across postcodes in Toronto. The right panel shows the average monthly consumption of natural gas measured

in cubic meters across postcodes in Toronto. Gray shaded areas indicate winter months, i.e., November–April.
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B Tree canopy and energy consumption

This section provides complements to Section 4. More specifically, we analyze energy

consumption during episodes of high temperatures (resp. wind chill) as a function

of the solar-shading potential (resp. wind-sheltering potential) of the local urban

forestry.

B.1 Construction of the shade and shelter measures

We first focus on the construction of two measures, the solar-shading potential and

the wind-sheltering potential.

Figure B1. Shading e↵ect of trees—creation of the time-dependent variable.

Notes: This Figure schematically represents the parameters used in order to derive the measure Shadeimh which

depends on a month of the year m, a time of the day h, and the surroundings of property i. We calculate the shade,

Shadeimh, as the percentage of the house front covered in shade by the nearest tree (distance d) in the direction as

implied by the time of the day h, and with the sun angle a as implied by the time of the day h and month m. We

consider a house front to be between 2 and 7 meters, we assume that trees are ht = 20 meters high with a crown

radius of r = 5 meters.

For the shading potential of the neighboring tree canopy, we compute the measure

Sim for property i and month m of a given year as,

Sim =

R
sunmh ⇥ ShadeimhdhR

sunmhdh
.

h is a time of the day, sunmh is the potential sun exposure at time h in month m and

Shadeimh is a measure of shade induced by the presence of trees around property

i at time h in month m. The variable Shadeimh is constructed by reconstituting

the month-specific solar angle am(h) and sun direction dm(h) as a function of time

h. At time h, we select all trees in direction dm(h) originating from the centroid

of a property. We then calculate the share of the property which is in the shade
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of these trees, Shadeimh, exploiting the distance to the trees and the solar angle.

This computation requires several assumptions regarding the height of a tree, the

diameter of its crown, and the height and width of a property. We provide additional

details about the computation in Figure B1.

Figure B2. Sheltering e↵ect of trees—creation of the time-dependent variable.

Notes: This Figure schematically represents the parameters used in order to derive the measure Tree✓i used to

construct the sheltering e↵ect of trees. We combine the surroundings of property i with the direction of wind ✓ as

follows: Tree✓i is a dummy equal to 1 if there is a tree in direction ✓ and within 20 meters of the property.

To capture the sheltering potential of trees in vicinity to property i in month m

of a given year, we compute

Wim =
X

✓

w✓m(1� Tree✓i)p✓t.

w✓m is the wind chill equivalent temperature (WCET) used by Environment Canada,

given the temperature in month m and the average wind speed from direction ✓;

Tree✓i is a dummy equal to 1 if there is a tree in direction ✓ and within 20 meters

of the property; p✓t is the probability that the wind originated from direction ✓ in

month m. We also compute a counterfactual measure for the wind chill equivalent

temperature (WCET), ignoring the neighboring tree:

W c
im =

X

✓

w✓mp✓m

We leave additional details of the computation to Figure B2.
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B.2 Shade, shelter and energy consumption

Empirical strategy To estimate the (local) cooling e↵ect of urban forestry, we

rely on a di↵erent empirical strategy exploiting short-run fluctuations in weather

conditions. We run a simple di↵erence-in-di↵erences specification at the postcode

level for all months m in year t between January 2011 and December 2015. Letting

p denote a postcode, m a month and t a particular year, we estimate the following

equation:

ln(Epmt) = ↵ + �2Spm ⇥ Tempt + �1Spm + �0Tempt + �p + ⌫m + µt + "pmt (4)

where ln(Epmt) is the (log) measure of energy consumption in a postcode/date. The

measure Spm captures the shade implied by surrounding trees in month m, thus

depending on seasonal solar angles. The measure Tempt is a dummy equal to 1

during episodes of exceptionally high temperatures (within the top decile recorded

between May and September). The identification of parameters � hinges on excess

energy savings during extreme weather episodes in properties with higher solar-

shading potential. ⌫m and µt are year and month fixed e↵ects that may also be

interacted.

We run a similar regression during low-temperature episodes in order to estimate

the wind-sheltering e↵ect of urban forestry.15 Letting p denote a postcode, m the

month, and t the year, we estimate the following equation:

ln(Epmt) = a+ bWpmt + cW c
pmt + �p + ⌫m + µt + "pmt (5)

where the measures Wpt and W c
pt are measures of wind chill, Wpt accounting for the

presence of surrounding trees and prevailing wind directions during month t. The

identification of parameter b hinges on excess energy savings during extreme weather

episodes in properties with higher wind-sheltering potential. As before, ⌫m and µt

are year and month fixed e↵ects that may also be interacted.

Results We now quantify the energy-saving e↵ect of trees. For illustrative pur-

poses, we will use graphs to show our main findings and we leave the underlying

regression models in Tables B1 and B2. Panel (a) of Figure A5 describes the re-

lationship between excess energy consumption during heat waves and the relative

positioning of trees. We estimate the conditional correlation between excess energy

15Since 70 percent of energy used in the residential sector comes from oil or gas (Mohareb and
Mohareb, 2014), we expect a stronger e↵ect of wind-sheltering on gas consumption. However, some
heating is electric and we still expect to find some e↵ect.
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consumption and surrounding trees as follows. We regress the postcode energy con-

sumption on a dummy for heat waves, the number of trees in a certain direction

(East, North, West, South) and their interaction, while controlling for time-fixed ef-

fects and postcode fixed-e↵ects. Figure A5 reports the energy premium guaranteed

by the presence of trees during heat waves (the interaction term) in all four direc-

tions. The energy premium associated with the presence of a tree is not negligible

in all directions, but even more so in the East and South where shade is likely to

provide cooling.

Figure B3. Excess energy consumption in extreme weather episodes and the relative positioning
of trees.

−.
14

−.
12

−.
1

−.
08

−.
06

En
er

gy
 p

re
m

iu
m

 (e
le

ct
ric

ity
)

N W S E
Relative positioning of trees

(a) Heat waves.
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(b) Wind chill.

Notes: This Figure represents the conditional correlations between energy consumption and the number of trees in

each of the four main directions from the property. See Section 2 for additional details.

Panel (b) of Figure A5 replicates the previous exercise for episodes of extreme

cold. We regress the postcode energy consumption on a dummy equal to 1 if the

wind chill equivalent temperature is lower than 0 Celsius degrees, the number of

trees in a certain direction (East, North, West, South) and their interaction, while

controlling for time-fixed e↵ects and postcode fixed-e↵ects. As expected, the energy

premium associated with the presence of a tree is smaller than it is for extreme

heat episodes. This is because fossil fuels are the dominant energy source while

electricity is less common. That said, the estimated e↵ect is significantly di↵erent

from 0 except when the tree is in the direction to the East. One explanation could

be that prevailing winds in Toronto blow from the West, South or North, but rarely

from the East.
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Table B1. Energy consumption and the cooling e↵ect of trees.

Energy consumption (1) (2) (3)
Heat wave .1073 .0437 .0437

(.0137) (.0109) (.0109)

Heat wave ⇥ Shade -.2997 -.3154 -.3157
(.0518) (.0528) (.0528)

Observations 2,271,628 2,271,628 2,271,628
Fixed e↵ects (postcode) No Yes Yes
Fixed e↵ects (time) Year Month/year Month/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a

date ⇥ postcode.

Table B2. Energy consumption and the sheltering e↵ect of trees.

Energy consumption (1) (2) (3)
Wind chill (no shelter) -.0047 -.0039 -.0038

(.0004) (.0005) (.0005)

Wind chill (shelter) .0015 .0016 .0016
(.0003) (.0003) (.0003)

Observations 2,161,759 2,161,759 2,161,759
Fixed e↵ects (postcode) No Yes Yes
Fixed e↵ects (time) Year Month/year Month/year
Controls (historical temperature) No No Yes
Standard errors are reported between parentheses and are clustered at the date-level. The unit of observation is a

date ⇥ postcode. Wind chill is a measure of felt temperature accounting for wind speed (and shelter in the second

row).
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